Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes.
نویسندگان
چکیده
We report on the preparation, atomic resolution imaging, and element selective damage mechanism in atomically thin boron nitride membranes. Flakes of less than 10 layers are prepared by mechanical cleavage and are thinned down to single layers in a high-energy electron beam. At our beam energies, we observe a highly selective sputtering of only one of the elements and predominantly at the exit surface of the specimen, and then subsequent removal of atoms next to a defect. Triangle-shaped holes appear in accordance with the crystallographic orientation of each layer. Defects are compared to those observed in graphene membranes. The observation of clean single-layer membranes shows that hexagonal boron nitride is a further material (in addition to graphene) that can exist in a quasi-two-dimensional allotrope without the need for a substrate.
منابع مشابه
Frictional characteristics of atomically thin sheets.
Using friction force microscopy, we compared the nanoscale frictional characteristics of atomically thin sheets of graphene, molybdenum disulfide (MoS2), niobium diselenide, and hexagonal boron nitride exfoliated onto a weakly adherent substrate (silicon oxide) to those of their bulk counterparts. Measurements down to single atomic sheets revealed that friction monotonically increased as the nu...
متن کاملMechanism for Low Temperature Growth of Boron Nitride Nanotubes
Selective growth of boron nitride nanotubes (BNNTs) was demonstrated by plasma-enhanced pulsed laser deposition (PE-PLD). Although PLD is a physical vapor deposition technique for the growth of boron nitride (BN) thin films, ion sputtering induced by the plasma can eliminate the formation of BN thin films and lead to the so-called total resputtering region, in which, a pure phase of BNNTs can b...
متن کاملDirect chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers.
Graphene and hexagonal boron nitride are typical conductor and insulator, respectively, while their hybrids hexagonal boron carbonitride are promising as a semiconductor. Here we demonstrate a direct chemical conversion reaction, which systematically converts the hexagonal carbon lattice of graphene to boron nitride, making it possible to produce uniform boron nitride and boron carbonitride str...
متن کاملBoron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy.
Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputt...
متن کاملGap modification of atomically thin boron nitride by phonon mediated interactions
: A theory is presented for the modification of bandgaps in atomically thin boron nitride (BN) by attractive interactions mediated through phonons in a polarizable substrate, or in the BN plane. Gap equations are solved, and gap enhancements are found to range up to 70% for dimensionless electron-phonon coupling λ =1, indicating that a proportion of the measured BN bandgap may have a phonon ori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 9 7 شماره
صفحات -
تاریخ انتشار 2009